ผลต่างระหว่างรุ่นของ "418531 ภาคต้น 2552/โจทย์ปัญหาความน่าจะเป็น II/เฉลยข้อ 3"
ไปยังการนำทาง
ไปยังการค้นหา
Cardcaptor (คุย | มีส่วนร่วม) (→ข้อ 2) |
Cardcaptor (คุย | มีส่วนร่วม) (→ข้อ 4) |
||
(ไม่แสดง 4 รุ่นระหว่างกลางโดยผู้ใช้คนเดียวกัน) | |||
แถว 74: | แถว 74: | ||
<td align="center"><math>= \,</math></td> | <td align="center"><math>= \,</math></td> | ||
<td align="left"><math>\frac{1}{p} + \frac{1}{q} - \frac{1}{1-(1-p)(1-q)} \,</math></td> | <td align="left"><math>\frac{1}{p} + \frac{1}{q} - \frac{1}{1-(1-p)(1-q)} \,</math></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | == ข้อ 3 == | ||
+ | เราได้ว่า | ||
+ | <table cellpadding="5"> | ||
+ | <tr> | ||
+ | <td align="right"><math>\Pr(\min(X,Y) = k) \,</math></td> | ||
+ | <td align="center"><math>= \,</math></td> | ||
+ | <td align="left"><math>\Pr(X = k \wedge Y > k) + \Pr(Y = k \wedge X > k) + \Pr(X = k \wedge Y = k) \,</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align="right"></td> | ||
+ | <td align="center"><math>= \,</math></td> | ||
+ | <td align="left"><math>\Pr(X = k) \Pr(Y > k) + \Pr(X > k) \Pr(Y = k) + \Pr(X = k)\Pr(Y = k) \,</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align="right"></td> | ||
+ | <td align="center"><math>= \,</math></td> | ||
+ | <td align="left"><math>(1-p)^{k-1}p (1-q)^k + (1-p)^k(1-q)^{k-1}q + (1-p)^{k-1}p(1-q)^{k-1}q \,</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align="right"></td> | ||
+ | <td align="center"><math>= \,</math></td> | ||
+ | <td align="left"><math>(1-p)^{k-1}(1-q)^{k-1} \Big[ p(1-q) + (1-p)q + pq \Big] \,</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align="right"></td> | ||
+ | <td align="center"><math>= \,</math></td> | ||
+ | <td align="left"><math>(1-p)^{k-1}(1-q)^{k-1} (p + q - pq) \,</math></td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | == ข้อ 4 == | ||
+ | เราได้ว่า | ||
+ | <table cellpadding="5"> | ||
+ | <tr> | ||
+ | <td align="right"><math>E[X\ |\ X \leq Y] \,</math></td> | ||
+ | <td align="center"><math>= \,</math></td> | ||
+ | <td align="left"><math>E[X\ |\ \min(X,Y) = X] \,</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align="right"></td> | ||
+ | <td align="center"><math>= \,</math></td> | ||
+ | <td align="left"><math>\sum_{k=1}^\infty \Pr(\min(X,Y) = k) E[X\ |\ \min(X,Y) = X \wedge \min(X,Y) = k] \,</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align="right"></td> | ||
+ | <td align="center"><math>= \,</math></td> | ||
+ | <td align="left"><math>\sum_{k=1}^\infty \Pr(\min(X,Y) = k) E[X\ |\ X = k \wedge \min(X,Y) = k] \,</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align="right"></td> | ||
+ | <td align="center"><math>= \,</math></td> | ||
+ | <td align="left"><math>\sum_{k=1}^\infty k \Pr(\min(X,Y) = k) \,</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align="right"></td> | ||
+ | <td align="center"><math>= \,</math></td> | ||
+ | <td align="left"><math>E[ \min(X,Y) ] \,</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align="right"></td> | ||
+ | <td align="center"><math>= \,</math></td> | ||
+ | <td align="left"><math>\sum_{k=1}^\infty \Pr(\min(X,Y) \geq k) \,</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align="right"></td> | ||
+ | <td align="center"><math>= \,</math></td> | ||
+ | <td align="left"><math>\sum_{k=1}^\infty \Pr(X \geq k \wedge Y \geq k) \,</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align="right"></td> | ||
+ | <td align="center"><math>= \,</math></td> | ||
+ | <td align="left"><math>\sum_{k=1}^\infty \Pr(X \geq k)\Pr(Y \geq k) \,</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align="right"></td> | ||
+ | <td align="center"><math>= \,</math></td> | ||
+ | <td align="left"><math>\sum_{k=1}^\infty (1-p)^{k-1}(1-q)^{k-1} \,</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align="right"></td> | ||
+ | <td align="center"><math>= \,</math></td> | ||
+ | <td align="left"><math>\sum_{k=1}^\infty [(1-p)(1-q)]^{k-1} \,</math></td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td align="right"></td> | ||
+ | <td align="center"><math>= \,</math></td> | ||
+ | <td align="left"><math>\frac{1}{1 - (1-p)(1-q)} = \frac{1}{p+q - pq} \,</math></td> | ||
</tr> | </tr> | ||
</table> | </table> |