ผลต่างระหว่างรุ่นของ "Week4 Machine Learning"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
 
 
(ไม่แสดง 3 รุ่นระหว่างกลางโดยผู้ใช้ 2 คน)
แถว 1: แถว 1:
 
Let's first review some linear algebra concepts.
 
Let's first review some linear algebra concepts.
 +
 +
== Hilbert spaces ==
 +
Recall some basic definitions:
 +
 +
'''Def:''' An inner product is<math> <\cdot, \cdot></math> is a bilinear form on a pair of vectors satisfying
 +
* <math><v, v> \ge 0</math> and <v,v> <math>= 0 \iff v=0</math>
 +
* <math><u,v> = \bar{<v,u>}</math>
 +
*<math> <ru + sv, w> = r<u,w> + s<v,w></math>
 +
 +
Note that every inner product space is a normed linear space with the norm
 +
:<math> ||v|| = \sqrt{<v, v>}</math>
 +
And with this norm, the inner product space forms a metric.
 +
 +
'''Def:''' A metric space is complete if every cauchy sequence converges to an element in the space
 +
 +
'''Def:''' A Hilbert space is a complete inner product space
 +
 +
== Reproducing kernel Hilbert spaces ==
 +
 +
Let <math>\mathcal{H}</math> be a Hilbert space consisting of functions on <math>\mathcal{X}</math>. A function <math>K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}</math> is called a reproducing kernel for<math> \mathcal{H}</math> if
 +
* For all y, <math>K_y = K(\cdot, y)</math> belongs to <math>\mathcal{H}</math>
 +
*'' (Reproducing property):'' For all y, for all <math>f \in \mathcal{H}</math>,
 +
: <math>f(y) = <f, K_y></math>
 +
Note that, in this case, dot-product is defined in a natural way, i.e.
 +
:<math> <f,g> = \int_{X} f(x) \bar{g}(x) </math>
 +
 +
== Properties of r.k. Hilbert spaces ==
 +
 +
* It is known that if a r.k. exists for a given Hilbert space, then it is unique. The proof is two-line
 +
 +
* (Existence of K):
 +
 +
== Eigenvector systems ==
 +
 +
 +
== Example 1: finite domain ==
 +
We show a motivating example when <math>\mathcal{X}</math> is finite.

รุ่นแก้ไขปัจจุบันเมื่อ 03:26, 20 เมษายน 2550

Let's first review some linear algebra concepts.

Hilbert spaces

Recall some basic definitions:

Def: An inner product is is a bilinear form on a pair of vectors satisfying

  • and <v,v>

Note that every inner product space is a normed linear space with the norm

And with this norm, the inner product space forms a metric.

Def: A metric space is complete if every cauchy sequence converges to an element in the space

Def: A Hilbert space is a complete inner product space

Reproducing kernel Hilbert spaces

Let be a Hilbert space consisting of functions on . A function is called a reproducing kernel for if

  • For all y, belongs to
  • (Reproducing property): For all y, for all ,

Note that, in this case, dot-product is defined in a natural way, i.e.

Properties of r.k. Hilbert spaces

  • It is known that if a r.k. exists for a given Hilbert space, then it is unique. The proof is two-line
  • (Existence of K):

Eigenvector systems

Example 1: finite domain

We show a motivating example when is finite.