ผลต่างระหว่างรุ่นของ "Week11 practice 2"
ไปยังการนำทาง
ไปยังการค้นหา
Jittat (คุย | มีส่วนร่วม) (→Sample) |
Jittat (คุย | มีส่วนร่วม) |
||
แถว 28: | แถว 28: | ||
We can compute: | We can compute: | ||
− | <math>E[\bar{X}]= E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n} | + | <math>E[\bar{X}]= E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}E\left[\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n} n\mu = \mu</math> |
+ | |||
+ | |||
=== Sample variances and sample standard deviations === | === Sample variances and sample standard deviations === |
รุ่นแก้ไขเมื่อ 01:36, 6 พฤศจิกายน 2557
Sample
Consider a certain distribution. The mean of the distribution is the expected value of a random variable sample from the distribution. I.e.,
.
Also recall that the variance of the distribution is
.
And finally, the standard deviation is .
Suppose that you take samples independently from this distribution. (Note that are random variables.
Sample means
The statistic
is called a sample mean.
We can compute: