ผลต่างระหว่างรุ่นของ "Week11 practice 2"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
แถว 24: แถว 24:
 
</center>
 
</center>
  
is called a '''sample mean.'''
+
is called a '''sample mean.''' Since <math>X_1,X_2,\dots,X_n</math> are random variables, the mean <math>\bar{X}</math> is also a random variable.
  
We can compute:
+
Thus, we can compute:
  
 
<math>E[\bar{X}]= E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}E\left[\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n} n\mu = \mu</math>
 
<math>E[\bar{X}]= E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}E\left[\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n} n\mu = \mu</math>
  
 +
and
  
 +
<math>Var(\bar{X}) = \frac{\sigma^2}{n}.</math>
  
 
=== Sample variances and sample standard deviations ===
 
=== Sample variances and sample standard deviations ===

รุ่นแก้ไขเมื่อ 01:37, 6 พฤศจิกายน 2557

Sample

Consider a certain distribution. The mean of the distribution is the expected value of a random variable sample from the distribution. I.e.,

.

Also recall that the variance of the distribution is

.

And finally, the standard deviation is .

Suppose that you take samples independently from this distribution. (Note that are random variables.

Sample means

The statistic

is called a sample mean. Since are random variables, the mean is also a random variable.

Thus, we can compute:

and

Sample variances and sample standard deviations