ผลต่างระหว่างรุ่นของ "Week11 practice 2"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
แถว 1: แถว 1:
== Sample ==
+
== Sampling and statistics ==
Consider a certain distribution.  The mean <math>\mu</math> of the distribution is the expected value of a random variable <math>X</math> sample from the distribution.  I.e.,
 
  
<center>
+
== Confidence interval, known <math>\sigma</math> ==
<math>\mu=E[X]</math>.
 
</center>
 
  
Also recall that the variance of the distribution is
+
== Confidence interval, unknown <math>\sigma</math> ==
 
 
<center>
 
<math>\sigma^2=Var(X)=E[(X-\mu)^2]=E[X^2] = E[X]^2.</math>.
 
</center>
 
 
 
And finally, the standard deviation is <math>\sigma = \sqrt{Var(X)}</math>.
 
 
 
Suppose that you take <math>n</math> samples <math>X_1,X_2,\ldots,X_n</math> independently from this distribution.  (Note that <math>X_1,X_2,\ldots,X_n</math> are random variables.
 
 
 
=== Sample means ===
 
 
 
The statistic
 
 
 
<center>
 
<math>\bar{X} = \frac{X_1+X_2+\cdots+X_n}{n} = \frac{1}{n}\sum_{i=1}^n X_i</math>
 
</center>
 
 
 
is called a '''sample mean.'''  Since <math>X_1,X_2,\dots,X_n</math> are random variables, the mean <math>\bar{X}</math> is also a random variable.
 
 
 
Thus, we can compute:
 
 
 
<math>E[\bar{X}]= E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}E\left[\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n E[X_i] = \frac{1}{n} n\mu = \mu</math>
 
 
 
and
 
 
 
<math>Var(\bar{X}) = \frac{\sigma^2}{n}.</math>
 
 
 
=== Sample variances and sample standard deviations ===
 

รุ่นแก้ไขเมื่อ 01:40, 6 พฤศจิกายน 2557

Sampling and statistics

Confidence interval, known

Confidence interval, unknown