ผู้ใช้:Chatchapol
204512-53/lecture13
จดบันทึกคำบรรยายโดย:
นายชัชพล นุโยค รหัส 5214550049 นายสุรเดช วัฒนอุดมโรจน์ รหัส 5214550320
== NP Completeness ==
<<
<<
Lemma : พิจารณาเซต ใดๆ ให้ A เป็น imdenpendent set โดย V-A เป็น Vertec Cover
Proof : Indenpendent set Vertex Cover
นิยาม : ปัญหา A เป็น Polynomial time เพื่อลดปัญหา B ถ้ามี Algorithm T ที่ทำงานใน Polynomial time สำหรับทุกๆ instance X ของ A จะได้ T(x) เป็น instance ของ B
X' = T(x) เป็น instance ของ B และ |X'| = Poly (|X|)
ถ้า x เป็น instance ตอบ "Yes" ใน A => x' เป็น instance ตอบ "Yes" ใน B
ถ้า x เป็น instance ตอบ "No" ใน A => x' เป็น instance ตอบ "No" ใน B
Lemma : ถ้า A B และมี Algorithm ที่แก้ปัญหา B ได้ใน Polynomial time จะมี Algorithm ที่แก้ปัญหา A ใน Polynomial time ได้ด้วย
Proof : ให้ M เป็น Polynomial time Algorithm ที่แก้ปัญหา B จะได้ว่า A B นั้นคือ มี Polynomial time Algorithm T ที่ instance x ของ A x' = T(x) มีขนาด poly(|x|) และคำตอบของ x ในปัญหา A ตรงกับของ x' ในปัญหา B
สำหรับ Algorithm M' ดังนี้
M'(x) : x' = T(x) return M(x')
แต่เนื่องจาก |x'| = poly(|x|)
ดังนั้น เวลาในการคำนวณ M(x')คือ poly(|x'|) = poly(poly(|x|)) = poly(|x|)
จากนิยาม M'(x) เป็นคำตอบของ x ใน A เหลือแต่ต้องตรวจสอบว่า M' ทำงานใน Polynomial time หรือ poly(|x|)