Foundations of ethical algorithms
หน้านี้สำหรับรายวิชา Foundations of Ethical Algorithms
เนื้อหา
- Week 1: Introduction
- เอกสารอ้างอิง
- Privacy
- L. Sweeney, Simple Demographics Often Identify People Uniquely. Carnegie Mellon University, Data Privacy Working Paper 3. Pittsburgh 2000.
- Netflix Prize. Arvind Narayanan and Vitaly Shmatikov, How To Break Anonymity of the Netflix Prize Dataset | FAQ
- GWAS privacy. Homer N, Szelinger S, Redman M, et al. Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLoS Genet. 2008;4(8):e1000167. Published 2008 Aug 29. doi:10.1371/journal.pgen.1000167
- Fairness
- 2nd Wave of Algorithmic Accountability
- Julia Powles and Helen Nissenbaum, The Seductive Diversion of ‘Solving’ Bias in Artificial Intelligence
- Frank Pasquale, The Second Wave of Algorithmic Accountability
- Frank Pasquale. 2020. Machines Judging Humans: The Promise and Perils of Formalizing Evaluative Criteria. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (AIES ’20)
- Doctorow, Second wave Algorithmic Accountability: from "What should algorithms do?" to "Should we use an algorithm?", BoingBoing
- Privacy
- เอกสารอ้างอิง
อ้างอิง
รายวิชาจะอ้างอิงเนื้อหาจากหลายแหล่ง ดังนี้
- หนังสือ The Algorithmic Foundations of Differential Privacy โดย Cynthia Dwork และ Aaron Roth
- Science of Data Ethics - UPenn สอนโดย Michael Kearns และ Kristian Lum
- Ethics in Data Science - UTah สอนโดย Suresh Venkatasubramanian และ Katie Shelef
- Foundations of Fairness in Machine Learning - UW สอนโดย Jamie Morgenstern
- Explainable AI in Industry: Practical Challenges and Lessons Learned (ACM FAT* 2020 Tutorial)