418531 ภาคต้น 2552/โจทย์ปัญหาการพิสูจน์ II

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา

ข้อ 1

จงใช้การอุปนัยทางคณิตศาสตร์แก้ปัญหาต่อไปนี้

  1. จงหาสูตรอย่างง่ายของ และพิสูจน์ว่ามันถูกต้อง
  2. จงหาสูตรอย่างง่ายของ และพิสูจน์ว่ามันถูกต้อง
  3. จงแสดงว่า เมื่อ n เป็นจำนวนเต็มที่ไม่เป็นลบ
  4. จงแสดงว่า เมื่อ n เป็นจำนวนเต็มบวกที่มีค่ามากกว่า 4
  5. จงแสดงว่า เมื่อ n เป็นจำนวนเต็มบวกที่มีค่ามากกว่า 1
  6. จงแสดงว่า 6 หาร ลงตัวเมื่อ n เป็นจำนวนเต็มที่ไม่เป็นลบ
  7. ให้ และ โดยที่ สำหรับ จงพิสูจน์ว่า
  8. จงแสดงว่า สำหรับจำนวนเต็ม n ที่มีค่าไม่เป็นลบ
  9. จงแสดงว่า 21 หาร ลงตัวเมื่อ n เป็นจำนวนเต็มบวก
  10. จงแสดงว่า

ข้อ 2

จงแสดงว่าถ้าเราวาดเส้นตรง n เส้นลงบนระนาบ โดยที่เส้นตรงนี้ไม่ีเส้นตรงสองเส้นใดๆ ขนานกัน และไม่มีเส้นตรงสามเส้นใดๆ ตัดกันที่จุดจุดเดียวกันแล้ว เส้นตรงทั้ง n แล้วเหล่านี้จะแบ่งระนาบออกเป็น ส่วน

ข้อ 3

ถ้า เป็นจำนวนจริงบวก จงแสดงว่า ค่าเฉลี่ยเลขคณิต มีค่ามากกว่าหรือเท่ากับ ค่าเฉลี่ยเรขาคณิต เสมอ

ข้อ 4

จงเขียนนิยามแบบเวียนบังเกิดของลำดับ โดยที่ เมื่อ

ข้อ 5

ให้ เป็นจำนวนฟิโบนักชีตัวที่ n

  1. จงแสดงว่า เมื่อ n เป็นจำนวนเต็มบวก
  2. จงแสดงว่า เมื่อ n เป็นจำนวนเต็มบวก
  3. จงแสดงว่า เมื่อ n เป็นจำนวนเต็มบวก

ข้อ 6

  1. จงให้นิยามแบบเวียนบังเกิดของฟังก์ชัน และ ซึ่งมีค่าเท่ากับค่าที่มากที่สุดและค่าที่น้อยที่สุดของจำนวนจริง ตามลำดับ
  2. จงพิสูจน์ว่า
  3. จงพิูสูจน์ว่า
  4. จงพิูสูจน์ว่า