418341 ภาคต้น 2552/โจทย์ปัญหาอัลกอริืทึมเกี่ยวกับกราฟ
ข้อ 1
ในชั้นเรียนเราได้พูดถึงการเก็บ undirected graph ด้วย adjacency matrix และ adjacency list
ถ้าเราจะเก็บ directed graph ด้วย adjacency matrix และ adjacency list บ้าง จะต้องเปลี่ยนแปลงรูปแบบการจัดเ็ก็บอย่างไรบ้าง?
ข้อ 2
[Dasgupta, Papadimitriou, Varizari 3.5] กำหนดกราฟแบบมีทิศทาง มาให้ กราฟผันกลับ (reverse) ของ คือกราฟ โดยที่มีเซตของ vertex เป็นเซตเดียวกันแต่ edge ใน คือ edge ใน ที่ถูกกลับข้าง (กล่าวคือ )
จงออกแบบอัลกอริทึมที่เมื่อให้ ในรูปแบบ adjacency list ให้คำนวณ ในรูปแบบ adjacency เช่นกัน อัลกอริทึมของคุณควรจะทำงานได้ในเวลา
ข้อ 3
- [Kleinberg & Tardos 3.2] จงออกแบบอัลกอริืทึมที่ตรวจสอบว่า undirected garph ที่ให้มาในรูปแบบ adjacency list มี cycle หรือไม่ ถ้ามีให้พิมพ์ออกมาหนึ่ง cycle (วงไหนก็ได้) อัลกอริึทึมของคุณควรจะทำงานได้ในเวลา เมื่อ คือจำนวน vertex คือจำนวน edge
- [Dasgupta, Papadimitriou, Vazirani 3.11] จงออกแบบอัลกอริทึมที่ เมื่อให้ directed graph และให้ edge มา แล้วคำนวณว่ามี cycle ที่มี เป็น edge หนึ่งอยู่ีใน cycle นั้นหรือไม่ ถ้ามีให้พิมพ์ออกมาสักหนึ่ง cycle อัลกอริทึมของคุณควรจะทำงานได้ในเวลา
ข้อ 4
สมมติว่าเราอัลกอริทึมในการทำ depth first search ให้สร้างอะเรย์ขนาด ช่อง เมื่อ คือจำนวน vertex เพิ่มขึ้นอีกสองอะเรย์ ได้แก่ และ โดยมีตัวแปร global ชื่อ clock
ซึ่งมีค่าเริ่มแรกเท่ากับ 1 เป็นตัวช่วย ดังต่อไปนี้
<geshi lang="c"> DFS(u) {
pre[u] = clock clock = clock + 1 explored[u] = 1 for i = 1 to d[u] do { v = a[u][i] if explored[v] = 0 then { parent[v] = u DFS(v) } }
post[u] = clock clock = clock + 1
} </geshi>
กล่าวคือ เป็นเหมือนเวลาที่ DFS(u)
เริ่มทำงาน และ เป็นเวลาที่ DFS(u)
ทำงานเสร็จ
นอกจากนี้ในการทำ depth first search เราจะพยายามเรียก DFS(u)
ที่ทุก vertex u ในกราฟหามันยังไม่เคยถูกไปถึงด้วย DFS มาก่อน ดังต่อไปนี้
<geshi lang="c"> DFSALL() {
for u = 1 to n do if explored[u] = 0 then { parent[u] = 0 DFS(u) }
} </geshi>
ข้อย่อย 4.1
พิจารณากราฟแบบมีทิศทางข้างล่างนี้
จงรัน DFSALL บนกราฟข้างบน โดยเวลาไล่ vertex ให้ไล่จาก vertex ที่มีหมายเลขน้อยไปยังมากหมายเลขมาก (ยกตัวอย่างเช่น vertex ที่มี edge พุ่งออกจาก 7 ไปถึง ได้แก่ vertex 6 และ 8 เป็นต้น) แล้วเขียน
- DFS tree
- อะเรย์
- อะเรย์
- อะเรย์
ข้อย่อย 4.2
หากเราจำแนก edge ในกราฟข้างบนออกเป็น 4 ประเภท ตังต่อไปนี้
- Tree edge คือ edge ที่อยู่บน DFS tree ที่ได้จากการทำ DFS
- Back edge คือ edge ที่พุ่งออกจาก vertex ไปหาบรรพบุรุษของมันใน DFS tree
- Forward edge คือ edge ที่พุ่งออกจาก vertex ไปหาลูกหลานของมันใน DFS tree
- Cross edge คือ edge อื่นๆ ที่ไม่เข้าพวกทั้งสามข้างต้น
แล้วจงบอกว่า edge ในกราฟเป็น edge แต่ละ edge เป็น edge ชนิดใดบ้าง