01204211/activity3 induction 1

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
This is part of 01204211-58

In-class activities 3

A.1 (LPV) Prove that for any integer , we have that

.

In problem A.1, you have to state clearly the property that you want to prove. Note that we use variable in the statement, to avoid confusion, you should choose other variables when you work on the inductive step.


A.2 (MN) Prove that for any integer , the following formula is true:

.

In problem A.2, you have to state clearly the property that you want to prove.


A.3 (MN-ex-1b) Prove that for integer ,


A.4 (R-3.3-ex-12) Prove that whenever is a positive integer greater than 6.


A.5 (a*) Prove using induction that using only 2-baht coins and 3-baht coins, one can obtain baht for . (Do not use strong induction.)

(b) Also prove this statement without using induction.


A.6 (MN-ex-3a) Draw lines in the plane in such a way that no two are parallel and no three intersect in a common point. How many parts do the lines divide the plane into? Experiment, guess the value, and prove it by induction.

Homework 3

Due: 23:59 18 Sept 2015 16 Sept 2015

H.1 (LPV-2.1.5) Prove the following identity:


H.2 (LPV-2.5.4b) Prove that for any integer , is a multiple of 6.


H.3 (R-3.3-ex-6) Find the formula for

.

Try a few values of , guess the formula, and prove it by induction.


H.4 (R-3.3-ex-19) Show that using only 3-baht coins and 5-baht coins, one can form a set of coins worth baht for any integer .


H.5* (R-3.3-ex-37) Show that if is a positive integer then

.

In this problem, the sum is over all nonempty subsets of .