418531 ภาคต้น 2552/โจทย์ปัญหาการวิเคราะห์เชิงการจัด/เฉลยข้อ 1

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา

ในปัญหาข้อนี้ให้ แทนเซตของจำนวนเต้มจาก 1 ถึง ที่ หารลงตัว เราได้ว่า

ให้ แทนเซตของจำนวนเต็มจาก 1000 ถึง 9999 ที่ k หารลงตัว เราได้ว่า ฉะนั้น

ข้อ 1

เซตของจำนวนเต็มจาก 1000 ถึง 9999 ที่ 9 หารลงตัวคือ ซึ่งมีสมาชืก ตัว

ข้อ 2

เซตของจำนวนเต็มจาก 1000 ถึง 9999 ที่เป็นจำนวนคู่คือ ซึ่งมีสมาชืก ตัว

ข้อ 3

เซตของจำนวนเต็มจาก 1000 ถึง 9999 ที่ 3 หารลงตัว คือ ซึ่งมีสมาชิก ตัว

ดังนั้นเซตของจำนวนเต็มจาก 1000 ถึง 999 ที่ 3 หารไม่ลงตัวจึงมีสมาชิกทั้งหมด ตัว

ข้อ 4

เซตของจำนวนเต็มจาก 1000 ถึง 9999 ที่หารด้วย 5 หรือ 7 ลงตัวคือ

เรารู้ว่า

ตัว

ข้อ 5

เซตของจำนวนเต็มจาก 1000 ถึง 9999 ที่ 5 และ 7 หารลงตัวคือ ซึ่งมีสมาชิก ตัว


ดังนั้นเซตของจำนวนเต็มจาก 1000 ถึง 999 ที่ 5 และ 7 หารไม่ลงตัวจึงมีสมาชิกทั้งหมด ตัว

ข้อ 6

เซตของจำนวนเต็มจาก 1000 ถึง 9999 ที่หารด้วย 5 หรือ 7 หรือ 11 ลงตัวคือ

เรารู้ว่า

ตัว

ข้อ 7

เซตของจำนวนเต็มจาก 1000 ถึง 9999 ที่ 5 และ 7 หารลงตัว คือ ซึ่งมีสมาชิก ตัว

เซตของจำนวนเต็มจาก 1000 ถึง 9999 ที่ 11 หารลงตัว คือ ซึ่งมีสมาชิก ตัว


และเซตของจำนวนเต็มจาก 1000 ถึง 999 ที่ 11 หารไม่ลงตัวจึงมีสมาชิกทั้งหมด ตัว

ดังนั้นเซตของจำนวนเต็มจาก 1000 ถึง 999 ที่ 5 และ 7 หารลงตัว แต่ 11 หารไม่ลงตัวจึงมีสมาชิกทั้งหมด ตัว