ผลต่างระหว่างรุ่นของ "Sgt/lecture2"
ไปยังการนำทาง
ไปยังการค้นหา
Tanee (คุย | มีส่วนร่วม) |
Tanee (คุย | มีส่วนร่วม) |
||
แถว 1: | แถว 1: | ||
สำหรับเนื้อหาในสัปดาห์นี้ เราเรียนรู้เกี่ยวกับคุณสมบัติของ eigen vector, eigen value ลำดับที่ 2 | สำหรับเนื้อหาในสัปดาห์นี้ เราเรียนรู้เกี่ยวกับคุณสมบัติของ eigen vector, eigen value ลำดับที่ 2 | ||
− | นิยาม [http://en.wikipedia.org/wiki/Rayleigh_quotient Rayleigh quotient] สำหรับ vector ''x'' และ symmetric matrix ''M'' เขียนแทนด้วย <math>R(M, x)</math> คือ <math>\frac{x^TMx}{x^Tx}</math> | + | นิยาม [http://en.wikipedia.org/wiki/Rayleigh_quotient Rayleigh quotient] สำหรับ vector ''x'' และ symmetric matrix ''M'' เขียนแทนด้วย <math>=R(M, x)=</math> คือ <math>\frac{x^TMx}{x^Tx}</math> |
โดยสังเกตว่าถ้า ''x'' เป็น eigen vector ของ ''M'' ค่า Rayleigh quotient จะมีค่าเป็น eigen value ที่สอดคล้องกับ ''x'' | โดยสังเกตว่าถ้า ''x'' เป็น eigen vector ของ ''M'' ค่า Rayleigh quotient จะมีค่าเป็น eigen value ที่สอดคล้องกับ ''x'' | ||
เนื่องจาก<math>R(M,x) = \frac{x^T(Mx)}{x^Tx} = \frac{x^T(\lambda x)}{x^Tx} = \frac{\lambda(x^Tx)}{x^Tx} = \lambda</math> | เนื่องจาก<math>R(M,x) = \frac{x^T(Mx)}{x^Tx} = \frac{x^T(\lambda x)}{x^Tx} = \frac{\lambda(x^Tx)}{x^Tx} = \lambda</math> |
รุ่นแก้ไขเมื่อ 04:28, 26 มกราคม 2558
สำหรับเนื้อหาในสัปดาห์นี้ เราเรียนรู้เกี่ยวกับคุณสมบัติของ eigen vector, eigen value ลำดับที่ 2
นิยาม Rayleigh quotient สำหรับ vector x และ symmetric matrix M เขียนแทนด้วย คือ โดยสังเกตว่าถ้า x เป็น eigen vector ของ M ค่า Rayleigh quotient จะมีค่าเป็น eigen value ที่สอดคล้องกับ x เนื่องจาก
และเราจะพิสูจน์ทฤษฎีบทว่า "ให้ เป็น symmetric matrix ถ้า เป็น non-zero vector ที่ทำให้ มีค่ามากที่สุด แล้ว จะเป็น eigen vector ของ ที่สอดคล้องกับ eigen value ที่มากที่สุด"
เราจะพิสูจน์โดยการใช้ Spectral theory (เนื้อหาครั้งที่ 1) ให้ M มี dimension ขนาด n (symmetric) ได้ว่า M มี eigen value และ eigen vector ที่สอดคล้องกับ เพื่อความสะดวก เราให้ว่า ||x|| = 1 และ |||| = 1 สำหรับทุก i และเราสามารถเขียน x ในรูป