ผลต่างระหว่างรุ่นของ "Sgt/lecture9"

จาก Theory Wiki
ไปยังการนำทาง ไปยังการค้นหา
แถว 37: แถว 37:
  
 
และ code word ขนาด n คือ <math>Q_f(0),Q_f(1),Q_f(2),...Q_f(n-1)</math>
 
และ code word ขนาด n คือ <math>Q_f(0),Q_f(1),Q_f(2),...Q_f(n-1)</math>
 +
 +
Reed-Solomon code จะ correct error ได้ p หน่วย
 +
 +
สังเกตุว่าหน่วยย่อยของ Reed-Solomon ไม่ใช่บิท เนื่องจาก correct ที่ระดับ element <math>f_i</math>
 +
 +
หากจะใช้หน่วยเป็นบิท จะต้องแทน element <math>f_i</math> ด้วย <math>log_2 p</math> บิท และจะ correct ได้เพียง p บิท
  
 
== Expander Code ==
 
== Expander Code ==

รุ่นแก้ไขเมื่อ 15:54, 21 เมษายน 2558

Spectral Graph Theory

  1. บทนำและทบทวนพีชคณิตเชิงเส้น (ณัฐวุฒิ)
  2. คุณสมบัติของ Eigenvalue ต่อกราฟ (ธานี,ณัฐวุฒิ)
  3. คุณสมบัติของ Eigenvalue ต่อกราฟ[2] (ภัทร)
  4. คุณสมบัติของ Eigenvalue ลำดับที่สองบนกราฟต่างๆ (ธานี)
  5. Cheeger Inequality (ศุภชวาล)
  6. การทดลอง Cheeger Inequality และ Effective Resistance (ธานี)
  7. Random Walks และ Psuedo Random Generator (ศุภชวาล)
  8. Psuedo Random Generator[2] (ภัทร)
  9. Coding Theory และ Expander code (ธานี)
  10. Expander graph from Linear coding (ภัทร)
  11. Chebyshev polynomial (ศุภชวาล)
  12. Preconditioning (ธานี)

แก้ไขกล่องนี้แก้ไขสารบัญ

บันทึกคำบรรยายวิชา Spectral graph theory นี้ เป็นบันทึกที่นิสิตเขียนขึ้น เนื้อหาโดยมากยังไม่ผ่านการตรวจสอบอย่างละเอียด การนำไปใช้ควรระมัดระวัง

Coding Theory

เราต้องการส่งข้อมูลขนาด m บิท แต่ระหว่างการส่งอาจจะเกิดความผิดพลาดทำให้บางบิทไม่ถูกต้อง จึงมีการคิดการส่งเพื่อให้สามารถตรวจจับ / แก้ไขความผิดพลาดได้ โดยส่งข้อมูลที่ encode แล้วและมีขนาด n บิท นั่นคือ

Hamming Code คือการ encode ข้อมูลขนาด 4 บิทไปเป็นข้อมูล 7 บิท โดยสามารถรับประกันได้ว่า ถ้าข้อมูลผิดพลาดไปไม่เกิน 1 บิท จะสามารถตรวจจับและแก้ไขได้ โดยให้ข้อมูลอยู่ที่บิทที่ 3,5,6,7 และ ให้

1.บิทที่ 4 เป็น XOR ของบิทที่ 5,6,7

2.บิทที่ 2 เป็น XOR ของบิทที่ 3,6,7

3.บิทที่ 1 เป็น XOR ของบิทที่ 3,5,7

ให้ แทนบิทที่ i เราสามารถตรวจจับ/แก้ไขความผิดพลาดไม่เกินหนึ่งบิทได้ดังนี้

a = XOR XOR XOR , b = XOR XOR XOR , c = XOR XOR XOR

ถ้า a,b,c ไม่เท่ากับศูนย์ บิทที่ผิดพลาดคือบิทที่

Random Linear Code

Reed-Solomon Code

อีกหนึ่งตัวอย่างของการทำ Error Correcting คือ Reed-Solomon Code

สำหรับจำนวนเฉพาะ p หนึ่งๆ และ message ขนาด m และนิยามฟังก์ชันพหุนาม

และ code word ขนาด n คือ

Reed-Solomon code จะ correct error ได้ p หน่วย

สังเกตุว่าหน่วยย่อยของ Reed-Solomon ไม่ใช่บิท เนื่องจาก correct ที่ระดับ element

หากจะใช้หน่วยเป็นบิท จะต้องแทน element ด้วย บิท และจะ correct ได้เพียง p บิท

Expander Code